Statistical Mechanical Assessment of a Reconstruction Limit of Compressed Sensing: Toward Theoretical Analysis of Correlated Signals
نویسندگان
چکیده
We provide a scheme for exploring the reconstruction limits of compressed sensing by minimizing the general cost function under the random measurement constraints for generic correlated signal sources. Our scheme is based on the statistical mechanical replica method for dealing with random systems. As a simple but non-trivial example, we apply the scheme to a sparse autoregressive model, where the first differences in the input signals of the correlated time series are sparse, and evaluate the critical compression rate for a perfect reconstruction. The results are in good agreement with a numerical experiment for a signal reconstruction. Introduction. – Compressed sensing (CS) is a novel technique for data compression and has been drawing a lot of attention recently from the viewpoints of both theory and application. The key idea behind CS is to utilize the sparsity of the original input signals as the prior knowledge during the signal reconstruction stage, which can significantly reduce the number of signal measurements required for a perfect reconstruction. This setup is realistic because we often have to face situations where we have to handle sparse signals in the real world. A lot of effort has been paid and significant progress has been made in investigating the properties of CS [1–3]. After the pioneering works, contribution to CS problem from statistical mechanics analysis is now growing rapidly [4–10]. The measurement process of CS is summarized in the following linear equation:
منابع مشابه
Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملCompressive Sensing of Sparse Signals in the Hermite Transform Basis: Analysis and Algorithm for Signal Reconstruction
—An analysis of the influence of missing samples in signals exhibiting sparsity in the Hermite transform domain is provided. Based on the statistical properties derived for the Hermite coefficients of randomly undersampled signal, the probability of success in detection of signal components support is determined. Based on the probabilistic analysis, a threshold for the detection of signal compo...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملCompressed Sensing, ASBSR-method of image sampling and reconstruction and the problem of digital image acquisition with lowest possible sampling rate
The problem of minimization of the number of measurements needed for digital image acquisition and reconstruction with a given accuracy is addressed. Basics of the sampling theory are outlined to show that the lower bound of signal sampling rate sufficient for signal reconstruction with a given accuracy is equal to the spectrum sparsity of the signal sparse approximation that has this accuracy....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1008.5274 شماره
صفحات -
تاریخ انتشار 2010